

SWEN-261
Introduction to Software
Engineering

Department of Software Engineering
Rochester Institute of Technology

Domain-Driven Design Activity

Entities and Value Objects are special types of
objects

2

 Normal Java equality semantics are not adequate

with dealing with Entities and VOs

 So, what does this mean equality semantics?
• Good question!

 The Java == operator only tests that the two object

references are the same.
• But having the "same location in the heap" is

meaningless for these types of objects

• The following slides explain the equality semantics of

both of these object types

• Starting with Value Objects…

Value Objects have value semantics.

 Value Object components represent values in the

real world: money, measurements, positions, and

so on

 Value objects must be equal based upon the

internal data of the value.
• For example, a coordinate Position is based upon

an x,y pair of integers

 Value objects must be immutable.
• Once set in a constructor no attribute may change

• No mutator methods; ie, no setters

3

Value Objects are equal when their internal data are
both equal

4

 Let's give an example:

public void make_multiple_positions() {

 Position p1 = new Position(2, 3);

 Position p2 = new Position(2, 3);

 if (p1 != p2) {

 // The two distinct objects have different identities.

 }

 if (p1.equals(p2)) {

 // The two value objects are equal.

 }

} The default behavior is the same as the == operator

but that is not appropriate for value objects.

Unfortunately the default equals method uses
reference identity. Doh!

5

 The solution is easy: override the equals method

with this type's equality semantics.

public class Position {

 private int x;

 private int y;

 // more code here

 @Override

 public boolean equals(Object obj) {

 if (obj == this) return true;

 if (!(obj instanceof Position)) return false;

 final Position that = (Position) obj;

 return this.x == that.x && this.y == that.y;

 }

} Equality is based upon all attributes.

Entities have identity semantics.

 Entity components represent things in the real

world: people, orders, products, and so on

 What identifies these types of things?

 In an Enterprise application the system would

store entities in a database.
• The database assigns a unique ID to each entity

object.

 When you don't have a database you choose an

attribute that is unique and unchanging.
• This is often called a natural key.

6

Provide an id for an Entity class.

7

public class Circle {

 private String id;

 private Position center;

 private int radius;

 public Circle(String id) {

 this.id = id;

 }

 public String getId() {

 return id;

 }

 // more code here

 @Override

 public boolean equals(Object obj) {

 if (obj == this) return true;

 if (!(obj instanceof Circle)) return false;

 final Circle that = (Circle) obj;

 return this.id.equals(that.id);

 }

}

Let the client of the Circle

specify a unique id.

So now that we have semantic equality, we need a
semantic hash code.

8

 In Java there is a close relationship between the
equals and hashCode methods.
• If you override one you must override the other.

• Use the attributes that make up the equality check

when building the hash code.

• If two objects are "equal" then they must also have the

same hash code:
x.equals(y) => x.hashCode() == y.hashCode()

 This is critical when you use objects as keys in a
HashMap or stored in HashSet collections.
• See Java API hashCode docs for explanation.

• See ProgramCreek blog for another explanation.

https://docs.oracle.com/javase/8/docs/api/java/lang/Object.html#hashCode
http://www.programcreek.com/2011/07/java-equals-and-hashcode-contract/

Value Objects with primitive attributes can
calculate its own hash code with simple arithmetic.

9

public class Position {

 private int x;

 private int y;

 // more code here

 @Override

 public boolean equals(Object obj) {

 if (obj == this) return true;

 if (!(obj instanceof Position)) return false;

 final Position that = (Position) obj;

 return this.x == that.x && this.y == that.y;

 }

 @Override

 public int hashCode() {

 return x * 31 + y;

 }

}
Java 8 now supplies a helper method:
return Objects.hash(x, y);

Entities should use the ID to calculate a hash code.

10

public class Circle {

 private String id;

 private Position center;

 private int radius;

 // more code here

 @Override

 public boolean equals(Object obj) {

 if (obj == this) return true;

 if (!(obj instanceof Circle)) return false;

 final Circle that = (Circle) obj;

 return this.id.equals(that.id);

 }

 @Override

 public int hashCode() {

 return id.hashCode();

 }

}

Your exercise is to build the code for this model.

 Implement the methods indicated in these two Model

classes:

11

 The classes must have the attributes and implementations

of the methods shown in red. This must compile!

 Place the two source files into a single zip file and deposit

it in the Domain-driven design - individual dropbox.

